Die extrakorporale Stoßwellentherapie in der Behandlung chronischer Wunden in der Wundsprechstunde – Ein Erfahrungsbericht

C. Moosmann, C. Grabosch, B. Jänigen

ZUSAMMENFASSUNG

SCHLÜSSELWÖRTER
ESWT, extrakorporale Stoßwellentherapie, radiale unfokussierte ESWT, rESWT, lineare fokussierte Stoßwellentherapie, Stimulation von chronischen Wunden

ABSTRACT
Extracorporeal shockwave therapy has been used for lithotripsy procedures in urology since the 1980s and has also established itself as a method to treat osseous non-union and tendon calcifications. In recent years, ESWT has also begun to be used to treat chronic wounds. The noninvasive energy of shockwaves is applied to the wound and wound environment to trigger healing processes. Angiogenesis, improved local blood circulation, release of growth factors, fibroblast stimulation, antibacterial effects and suppression of pro-inflammatory processes have all been reported following ESWT. In clinical practice, radial unfocused and linear focused extracorporeal shockwaves can both be used to treat chronic wounds. A first randomized trial by Moretti et al. in 2009 provided evidence that ESWT can positively affect wound healing in diabetic foot syndrome; however, the level of evidence was low. More than 600 patients with chronic wounds have been treated with ESWT in the Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital since 2010. This article describes our experience with radial unfocused and linear focused shockwaves to treat chronic wounds.

KEYWORDS
ESWT, extracorporeal shockwave therapy, radial unfocused ESWT, rESWT, linear focused shockwave therapy, stimulation of chronic wounds

Introduction
Shockwaves are a special form of acoustic waves which can be used to apply physical energy to a body, e.g. the human body. When the energy is generated, there is a very steep short increase in pressure which occurs in the space of just a few nanoseconds followed by a gradual, slower drop in pressure. As the shockwave dies away, a brief negative pressure (suction effect) is created, the so-called “pulling phase” (s. Fig. 1). Depending on the intensity, the entire shockwave takes between a few microseconds and a maximum of a few milliseconds. After approximately 1 second, the ambient pressure in the treated tissue will have returned to normal again [1].

Shockwaves are a well-known physical phenomena which occur in nature (e.g. following a lightning strike), where they are often experienced by human ears as a loud bang. The energy which shockwaves can generate is visible in the bursting of windows following the detonation of explosives or the descent of an avalanche after an explosion in the mountains.

The idea of using shockwaves for medical treatment was first proposed in the 1950s.
In 1951 Frank Rieber applied for a patent in the USA for an electrohydraulic shockwave unit to treat brain tumors. In 1966 Dornier (a company domiciled in Friedrichshafen, Germany) accidently discovered during experiments with high-speed projectiles that shockwaves can pass through the human body without causing direct damage [2]. Since that time, research has been carried out into shockwaves and their applications. The first disintegration of kidney stones using ESWT was performed in 1980. The discovery that shockwaves can be used not just to destroy certain types of tissue such as renal calculi and gallstones but can also trigger other biological effects if the intensity of the shockwave is adjusted appropriately, has continually expanded the range of applications for ESWT. In addition to the treatment of kidney stones [3] and sialoliths [4] shockwaves are also used in orthopedics to treat non-union [5], calcific tendonitis [6], and pain arising from enthesisitis such as calcaneal spurs or tennis elbow [7]. Other clinical areas of application include disorders of cardiac circulation [8], erectile dysfunction [9] and cellulite [10]. The treatment of chronic wounds is a relatively new application area for ESWT [11].

The Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital has continually used ESWT since 2010. Our experience with the use of ESWT to treat chronic wounds is described below.

Types of extracorporeal shockwave therapy

When treating wounds, the shockwave is generated outside the body and the treatment is therefore referred to as extracorporeal shockwave therapy (abbreviated to ESWT). The shockwave can be generated by an underwater spark discharge, by electromagnetic, electro-pneumatic, electrohydraulic, ballistic, piezo-electric, pulsed laser and by micro-explosions. Ballistic and piezo-electric ESWT units are mainly used to treat wounds. The classification of the energy flux density of shockwaves as defined by Rompe et al. [12] is as follows:

- **low energy**: up to 0.08 mJ/mm²
- **medium energy**: up to 0.28 mJ/mm²
- **high energy**: more than 0.28 mJ/mm²

Low to medium energy flux densities are used to treat chronic wounds. High energy shockwaves are used to treat non-union, calcific sialoliths shockwaves are also used in orthopedics to treat non-union, calcific tendonitis, and pain arising from enthesisitis such as calcaneal spurs or tennis elbow. The treatment of chronic wounds is a relatively new application area for ESWT [11].

Radial unfocused shockwave therapy

Radial unfocused shockwaves (rESWT) are generated by a pneumatically driven projectile inside a cylinder which hits a metal die at high speed in the unit’s applicator. The metal die which transfers the shockwave to the skin. The energy is unfocused (s. Fig. 2) when it is released into the tissue, which is why these pressure waves are referred to as unfocused shockwaves. The highest energy with rESWT always occurs at the point of contact of the skin with the applicator, after which the pressure wave is then absorbed by the skin. Because of the scattering of the shockwave, rESWT is particularly suited to treat superficial structures, e.g. the skin. By definition, because the wave is not very steep, it is not a shockwave in the true sense of the word but a pressure wave [13]. The Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital used a rESWT Swiss Dolorclast unit from EMS for a period of 6 months. It has an ESWT power+ handpiece with 36 mm head; and an energy flux density of 0.07 mJ/mm², so the generated pressure waves are low energy. The unit has been approved to treat wounds since 2010 (EMS manufacturer’s data).

rESWT is generated ballistically, which affects the noise levels when the unit is operated. Talking to patients during procedures is only possible using a very loud voice. Because of the pneumatic-ballistic generation of the pressure wave, the handpiece has to be serviced after it has been triggered 500,000 times. In practice, this corresponds to an average of around 600 treatments. Because of the short, hard thrust of the applicator, the authors are of the opinion that rESWT should not be applied directly to bone as it is conceivable that direct contact between metal and bone could result in injury to the bone.

Linear focused extracorporeal shockwave therapy

Linear focused extracorporeal shockwaves are generated piezo-electrically in a concave handpiece (s. Fig. 3). Each individual piezo crystal generates a pressure wave at the same time, all of which meet up at a focal point to create the shockwave. The spherical concave shape creates a point-focused shockwave in the focus, which is suitable to treat small areas. Wider, flatter, laterally concave shapes create a linear focus, which is suitable to treat larger areas, for example the skin or wounds. In contrast to rESWT, the area where the shockwave is generated (focus) lies outside the handpiece, allowing...
the depth where the shockwave develops to be varied. The depth is determined using spacers (gel pads) of different heights which are placed in the applicator. As the gel pads are interchangeable, it is not necessary to exchange the applicator. Since 2012, the Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital has used a linear extracorporeal piezo-wave shockwave unit (Richard Wolf) and a linear FBL10 x 5G2 handpiece which has an energy flux density of 0.018–0.16 mJ/mm², i.e., a medium to low energy flux density. According to the manufacturer, the focal zone of the handpiece is 46 mm long and 4 mm wide, allowing the piezoelectrically generated shockwaves to be applied over larger surfaces in a shorter period of time. When treating wounds, the Outpatient Wound Clinic uses the 0 gel pad. This results in the application of an energy flux density of 0.16 mJ/mm² at skin level. The level of noise during applications is 65 dB (A) (manufacturer’s data from ELvation), which is much quieter than the noise levels generated with rESWT; medical staff can talk to patients during procedures without difficulty. The applicator needs to be serviced after 5 million shockwave pulses, which corresponds to an average of 6000 treatments.

Mode of action and evidence

Shockwave energy is transformed through direct or indirect effects into mechanical, thermal or chemical energy [14]. The understanding of how shockwaves work has largely been obtained from animal and in vitro testing. The clinical relevance of these findings in terms of their efficacy when treating people with chronic wounds has not yet been adequately proven.

The effects of shockwave therapy described in the literature include:

- Neovascularization and improvement of local blood flow [15]
- Growth factor expression [16]
- Fibroblast stimulation [17]
- Antibacterial effects [18]
- Suppression of pro-inflammatory processes [19]

In the S3-guideline on the local therapy of chronic wounds in high-risk patients with chronic venous insufficiency (CVI), peripheral arterial occlusive disease (PAOD) or diabetes mellitus, the evidence level on the use of ESWT to treat chronic wounds was classified as low [20]. Double-blinded, randomized, controlled studies on the use of ESWT to treat chronic wounds are currently not available. There is one randomized (but not double-blinded) controlled study of 30 patients by Moretti et al. on neuropathic wounds in patients with diabetic foot syndrome. The study reported that wound healing was faster in the ESWT group (ESWT group: 2.97 mm²/day; control group: 1.30 mm²/day) [21].

Practical experience in the Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital

Indications to use ESWT to treat wounds (manufacturer’s data):

- Chronic wounds caused by diabetic foot syndrome, neuropathic ulcerations, venous ulcers, pressure ulcers, etc.

Contraindications to treat wounds with ESWT (manufacturer’s data)

- Pregnancy
- Untreated infection in or around the wound
- Necrosis
- Malignant tumor at the wound site
- Clotting disorders
- Oncologic disease with thrombocytopenia
- Pacemaker implant
- Applications in the vicinity of the lungs or thorax.

There is still no data available on the interaction between shockwaves and metal implants. For this reason, the above-listed contraindications were expanded in-house in the Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital to avoid potential complications such as hemorrhage or bone defects as follows:
• Freshly implanted vascular stent in the vicinity of the wound (ESWT treatment only after clearance by an angiologist).
• Metal implant (e.g. arthrodesis) in the vicinity of the wound (ESWT treatment only after clearance by the treating orthopedist)
• Only applies to radial unfocused ESWT: projecting exposed bone (e.g. in a large deep wound at the calcaneus) where the pressure applicator could come into direct contact with bone
• Cause of wound is unknown/has not yet been diagnosed and/or wound treatment has not yet commenced.

Possible side effects of ESWT described in the literature include hematoma, swelling and pain during treatment, and redness due to irritation of the skin.

More than 600 patients with chronic wounds have been treated with ESWT in the Outpatient Wound Clinic of the General and Visceral Surgery Department since 2010. Up to now, no cases of internal bleeding, swelling or skin irritations have been reported in these patients. Some skin redness in the vicinity of the wound has been reported in the context of hyperemia (s. Fig. 4) which developed after ESWT. In cases where this effect occurred, patients reported that the area around the wound felt warmer and that they experienced a tingling sensation in the area treated with ESWT. We recommend keeping the intensity low at the start of treatment when treating pain-sensitive wounds and only gradually increasing the intensity over the course of treatment.

ESWT procedures

The physician is responsible for the diagnostic evaluation, for obtaining the patient’s informed consent, performing the first application, deciding on the intensity of treatment (frequency, pulse intensity, number of pulses) and the area to be treated. The area at and around the wound is then prepared for treatment.

The following items are additionally required to carry out an ESWT application:
• Unsterile items: ultrasound gel, wipes for cleaning, surface disinfectants to clean the shockwave applicator
• Sterile items: gauze compresses to clean the wound, hydrogel (bubble-free) to fill the wound, foil to cover the wound and the edge of the wound

The individual steps of the procedure are shown in Figure 5. Special positioning of the patient is not required. ESWT can be applied when the patient is sitting or lying down; however, it is important to avoid muscle tension around the wound. The area requiring treatment must be clearly visible, easily reached by the shockwave applicator and should not put any strain on the therapist’s back. The wound must be clean with no necrosis: it may therefore be necessary to carry out debridement before starting treatment (1). The wound is then filled with (bubble-free) hydrogel up to the level of the skin (2) and covered with sterile foil. It is important to ensure there are no...
Initial retrospective analysis for the Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital

To obtain an initial assessment on the use of ESWT in the Outpatient Wound Clinic, the wound healing of patients treated over a period of 6 months (August 2010–January 2011) was retrospectively evaluated. A total of 89 patients with chronic wounds were treated with ESWT in this period. 49 patients were excluded from the final evaluation as they received other additional treatments to improve healing, for example revascularization, or their treatment was discontinued (the patient was transferred to a different hospital or the patient died). A total of 40 patients with different chronic wounds (healing of an abdominal wound by intention [n=2], pilonidal sinus [n=2], sacral pressure ulcers [n=2], venous ulcers [n=12], diabetic foot syndrome [n=22]) were included in the analysis. The wounds of all patients had persisted for at least 8 weeks, the cause of the wound was known, and the wound had been treated for at least 4 weeks. Wound diameters ranged from 0.4 cm² to 86 cm².

During the observation period of 4 weeks, no changes were made to local therapy or treatment of the cause of the wound. In two sessions per week, an average of 1000 pulses/10 Hz were administered to the wound and the area around the wound with a rESWT unit. Changes to the wound were recorded prior to, during and after treatment using software-based documentation, changes were measured by planimetric photography, and pain was assessed using the VAS scale. None of the patients required any analgesia for rESWT. The maximum change to the VAS score during treatment was two points. Patients reported that they experienced the noise of the unit during operation as more unpleasant than any pain.

29 patients showed no change in the speed of wound healing (decrease in wound area) compared to treatment received prior to ESWT. In 23 patients of this cohort who did not respond to rESWT, the therapy used to treat the cause of the wound was found to be insufficient. Treatment of these patients was changed after the end of the observation period (surgical intervention [n=8], optimization of decongestive therapy [n=8], additional pressure relief for the foot [n=5], revascularization therapy [n=2]).

In 11 patients (diabetic foot syndrome [n=8], pressure ulcers [n=3]), wound healing accelerated following rESWT; the wounds of 4 patients (wound area <0.5 cm², all with diabetic foot syndrome) healed spontaneously after 2 rESWT applications (no healing prior to rESWT). The formation of granulation tissue over exposed tendons was particularly noteworthy (n=3; one example is shown in Fig. 6 a–d).

The most significant positive effects (i.e., accelerated decrease of the area and depth of the wound) were observed in patients with diabetic foot syndrome compared to patients with other underlying disease, (one example is shown in Fig. 7 a–c).

Randomized controlled studies will be necessary to obtain reliable data about the impact of ESWT on wound healing.

Figure 6

a: Mixed venous ulcer in patient s/p trauma of the heel 3 weeks previously and CVI + POAD stage II (ABI 0.7). Treatment consisted of moist wound treatment appropriate to the stage of wound healing, class 2 padded compresses, special shoes and surgical debridement.

b: In the 23rd week of therapy: surgical debridement and ESWT started.

c: In the 26th week of therapy: 6th session of ESWT, tendon now almost covered with granulation tissue.

d: In the 28th week of treatment: wound status after 11 sessions of ESWT.
treat chronic wounds must consist of in the scientific evaluation of ESWT to randomized studies to determine the effects is a relatively new therapeutic field. It is now an established additional therapeutic option of the Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital, where it is used to promote wound healing of chronic wounds, particularly in patients with diabetic foot syndrome. Because of the low cost, the short amount of time required, and the uncomplicated application, ESWT can be easily integrated into the clinical routine of an outpatient wound clinic. The next step in the scientific evaluation of ESWT to treat chronic wounds must consist of randomized studies to determine the effects and the selection of patients more precisely.

Conclusions for clinical practice

The use of ESWT to treat chronic wounds is a relatively new therapeutic field. It is now an established additional therapeutic option of the Outpatient Wound Clinic of the General and Visceral Surgery Department of Freiburg University Hospital, where it is used to promote wound healing of chronic wounds, particularly in patients with diabetic foot syndrome. Because of the low cost, the short amount of time required, and the uncomplicated application, ESWT can be easily integrated into the clinical routine of an outpatient wound clinic. The next step in the scientific evaluation of ESWT to treat chronic wounds must consist of randomized studies to determine the effects and the selection of patients more precisely.

Conflict of Interest

The authors state that they had no conflict of interest as defined by the guidelines of the International Committee of Medical Journal Editors (ICMJE).

References

Stimulates wound healing in a new and effective way.